Stable minimal surfaces in M × ℝ

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Surfaces in M × R

In this paper, we investigate the problem of finding minimal surface in M ×R with general boundary conditions through an variational approach. As an application we generalize the results in [8] to M × R. We also show the long time existence and uniform convergence of the corresponding flow problem.

متن کامل

Stable Complete Minimal Surfaces in R Are Planes

A proof of the statement in the title is given.

متن کامل

Stable Minimal Surfaces

Let M<=R be a minimal surface. A domain Z><= M is an open connected set with compact closure D and such that its boundary dD is a finite union of piecewise smooth curves. We say that D is stable if D is a minimum for the area function of the induced metric, for all variations of D which keep dD fixed. In this note we announce the following estimate of the "size" of a stable minimal surface. We ...

متن کامل

Minimal surfaces in H × R

We construct complete embedded minimal surfaces in H × R. The first one is a finite total curvature surface which is conformal to S \ {p1, ..., pk}, k ≥ 2; the second one is a 1-parameter family of singly-periodic minimal surfaces which is asymptotic to a horizontal plane and a vertical plane; the third one is a 2-parameter family of minimal surfaces which have a fundamental piece of finite tot...

متن کامل

Minimal Surfaces in R with Dihedral Symmetry

We construct new examples of immersed minimal surfaces with catenoid ends and finite total curvature, of both genus zero and higher genus. In the genus zero case, we classify all such surfaces with at most 2n+1 ends, and with symmetry group the natural Z2 extension of the dihedral group Dn. 1 2 The surfaces are constructed by proving existence of the conjugate surfaces. We extend this method to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 2004

ISSN: 0022-040X

DOI: 10.4310/jdg/1115669593